Package: coreSim (via r-universe)

October 11, 2024

Type Package
Title Core Functionality for Simulating Quantities of Interest from Generalised Linear Models
Description Core functions for simulating quantities of interest from generalised linear models (GLM). This package will form the backbone of a series of other packages that improve the interpretation of GLM estimates.
Version 0.2.4
Date 2017-05-15
BugReports https://github.com/christophergandrud/coreSim/issues
License GPL (>= 3)
LazyData TRUE
RoxygenNote 6.0.1
Depends R (>= 2.10)
Imports dplyr (>= 0.5.0), MASS
Suggests car, splines, survival, testthat
Repository https://christophergandrud.r-universe.dev
RemoteUrl https://github.com/christophergandrud/coresim
RemoteRef HEAD
RemoteSha f5b7a79111397c29b4c8e43c4fd7b1fc43d3307d
Contents
Admission
Index

b_sim

Admission	Graduate school admissions data
-----------	---------------------------------

Description

A data set containing 400 graduate school admissions decisions.

Usage

Admission

Format

A data set with 400 rows and 4 variables.

Source

```
UCLA IDRE http://stats.idre.ucla.edu/r/dae/logit-regression/
```

b_sim	Simulate coefficients from a GLM by making draws from the multivariate normal distribution

Description

Simulate coefficients from a GLM by making draws from the multivariate normal distribution

Usage

```
b_sim(obj, mu, Sigma, nsim = 1000)
```

Arguments

1 •	C 1 1 1	1
obi	a fitted model	object.

mu an optional vector giving the means of the variables. If obj is supplied then mu

is ignored.

Sigma an optional positive-definite symmetric matrix specifying the covariance matrix

of the variables. If obj is supplied then Sigma is ignored. If your model includes

an intercept, this should be given the name intercept_.

nsim number of simulations to draw.

Value

A data frame of simulated coefficients from obj.

linear_systematic 3

Examples

```
library(car)
# Estimate model
m1 <- lm(prestige ~ education + type, data = Prestige)
# Create fitted values
prestige_sims <- b_sim(m1)
# Manually supply coefficient means and covariance matrix
coefs <- coef(m1)
vcov_matrix <- vcov(m1)
prestige_sims_manual <- b_sim(mu = coefs, Sigma = vcov_matrix)</pre>
```

linear_systematic

Find the systematic component in the linear form for fitted values in across each simulation (note: largely for internal use by qi_builder)

Description

Find the systematic component in the linear form for fitted values in across each simulation (note: largely for internal use by qi_builder)

Usage

```
linear_systematic(b_sims, newdata, inc_intercept = TRUE)
```

Arguments

b_sims a data frame created by b_sim of simulated coefficients.

newdata a data frame of fitted values with column names corresponding to variable names

in b_sims. Variables in b_sim not present in newdata will be treated as fitted at 0. Interactions will automatically be found if they were entered into to the

model using the * operator.

inc_intercept logical whether to include the intercept in the lineary systematic component.

Value

A data frame fitted values supplied in newdata and associated linear systematic component estimates for all simulationed coefficient estimates. The linear systematic components are included in a column named 1s_.

Source

King, Gary, Michael Tomz, and Jason Wittenberg. 2000. "Making the Most of Statistical Analyses: Improving Interpretation and Presentation." American Journal of Political Science 44(2): 341-55.

4 qi_builder

Examples

```
library(car)

# Estimate model
m1 <- lm(prestige ~ education + type, data = Prestige)

# Create fitted values
fitted_df <- expand.grid(education = 6:16, typewc = 1)

# Simulate coefficients
m1_sims <- b_sim(m1, nsim = 1000)

# Find linear systematic component for fitted values
ls <- linear_systematic(b_sims = m1_sims, newdata = fitted_df)</pre>
```

qi_builder

Find quantities of interest from generalized linear models

Description

Find quantities of interest from generalized linear models

Usage

```
qi_builder(obj, newdata, FUN, ci = 0.95, nsim = 1000, slim = FALSE,
  large_computation = FALSE, original_order = FALSE, b_sims, mu, Sigma,
  verbose = TRUE, ...)
```

Arguments

obj	a fitted model object from which to base coefficient simulations on.
newdata	an optional data frame of fitted values with column names corresponding to coefficient names in obj or mu/Sigma. Note that variables not included in newdata will be fitted at 0. If missing then observations used to fit the model in obj will be used.
FUN	a function for calculating how to find the quantity of interest from a vector of the fitted linear systematic component. It must return a numeric vector. If missing then a normal linear regression model is assumed and the predicted values are returned (i.e. the fitted linear systematic component from linear_systematic).
ci	the proportion of the central interval of the simulations to return. Must be in $(0, 1]$ or equivalently $(0, 100]$. Note: if $ci = 1$ then the full interval (i.e. 100 percent) is assumed.
nsim	number of simulations to draw.
slim	logical indicating whether to (if FALSE) return all simulations in the central interval specified by ci for each fitted scenario or (if TRUE) just the minimum, median, and maxium values. See qi_slimmer for more details.

qi_builder 5

large_computation

logical. If newdata is not supplied, whether to allow > 100000 simulated quan-

tities of interest to be found.

original_order logical whether or not to keep the original scenario order when slim = TRUE.

Choosing FALSE can imporove computation time.

b_sims an optional data frame created by b_sim of simulated coefficients. Only used if

obj is not supplied.

mu an optional vector giving the means of the variables. If obj or b_sims is supplied

then mu is ignored.

Sigma an optional positive-definite symmetric matrix specifying the covariance matrix

of the variables. If obj is supplied then Sigma is ignored. If your model includes

an intercept, this should be given the name intercept_.

verbose logical. Whether to include full set of messages or not.

... arguments to passed to linear_systematic.

Value

If slimmer = FALSE a data frame of fitted values supplied in newdata and associated simulated quantities of interest for all simulations in the central interval specified by ci. The quantities of interest are in a column named qi_.

If slimmer = TRUE a data frame of fitted values supplied in newdata and the minimum, median, and maximum values of the central interval specified by ci for each scenario are returned in three columns named qi_min, qi_median, and qi_max, respectively.

Examples

```
library(car)
## Normal linear model
m1 <- lm(prestige ~ education + type, data = Prestige)
# Using observed data as scenarios
linear_qi_obs <- qi_builder(m1)</pre>
# Create fitted values
fitted_df_1 <- expand.grid(education = 6:16, typewc = 1)
linear_qi <- qi_builder(m1, newdata = fitted_df_1)</pre>
# Manually supply coefficient means and covariance matrix
coefs <- coef(m1)</pre>
vcov_matrix <- vcov(m1)</pre>
linear_qi_custom_mu_Sigma <- qi_builder(mu = coefs, Sigma = vcov_matrix,</pre>
                                   newdata = fitted_df_1)
## Logistic regression
# Load data
data(Admission)
```

6 qi_slimmer

qi_slimmer

Find maximum, minimum, and median values for each scenario found using qi_builder

Description

Find maximum, minimum, and median values for each scenario found using qi_builder

Usage

```
qi_slimmer(df, scenario_var = "scenario_", qi_var = "qi_")
```

Arguments

df a data frame of simulated quantities of interest created by qi_builder.

scenario_var character string of the variable name marking the scenarios.

qi_var character string of the name of the variable with the simulated quantity of inter-

est values.

Details

This function slims down a simulation data set to some of its key features (minimun, median, and maximum value for each fitted scenario) so that it takes up less memory and can be easily plotted.

The function is incorporated into qi_builder and can be run using slim = TRUE.

Value

A data frame with the fitted values and the minimum (qi_min), median (qi_median), and maximum (qi_max) values from the central interval specified with ci in qi_builder.

qi_slimmer 7

Examples

```
library(car)

# Normal linear model
m1 <- lm(prestige ~ education + type, data = Prestige)

# Simulate coefficients
m1_sims <- b_sim(m1)

# Create fitted values
fitted_df <- expand.grid(education = 6:16, typewc = 1)

# Find predicted outcomes (95% central interval, by default)
linear_qi <- qi_builder(b_sims = m1_sims, newdata = fitted_df, slim = FALSE)

# Slim data set
linear_slim <- qi_slimmer(linear_qi)</pre>
```

Index

```
* datasets
    Admission, 2

Admission, 2

b_sim, 2, 3, 5

linear_systematic, 3, 4, 5

qi_builder, 3, 4, 6

qi_slimmer, 4, 6
```